Effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion.
نویسندگان
چکیده
The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10(–5)) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g(–1)) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g(–1)) had a negative rise potential (−31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to −6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.
منابع مشابه
Ions Transport and Adsorption Mechanisms in Porous Electrodes During Capacitive-Mixing Double Layer Expansion (CDLE)
A model of the electro-diffusion of ions in porous electrodes is applied to analyze the dynamics of capacitive-mixing extraction of energy from salinity gradients with carbon porous electrodes. The complex time-evolution of the cell voltage observed in experiments is satisfactorily described. The asymmetry on the duration of the solution-change steps performed in open circuit is found to be due...
متن کاملModification of the surface of activated carbon electrodes for capacitive mixing energy extraction from salinity differences.
The "capacitive mixing" (CAPMIX) is one of the techniques aimed at the extraction of energy from the salinity difference between sea and rivers. It is based on the rise of the voltage between two electrodes, taking place when the salt concentration of the solution in which they are dipped is changed. We study the rise of the potential of activated carbon electrodes in NaCl solutions, as a funct...
متن کاملCapacitive Mixing for Harvesting the Free Energy of Solutions at Different Concentrations
An enormous dissipation of the order of 2 kJ/L takes place during the natural mixing process of fresh river water entering the salty sea. “Capacitive mixing” is a promising technique to efficiently harvest this energy in an environmentally clean and sustainable fashion. This method has its roots in the ability to store a very large amount of electric charge inside supercapacitor or battery elec...
متن کاملOxygen-doped porous silicon carbide spheres as electrode materials for supercapacitors.
Oxygen-containing functional groups were introduced onto the surface of the micro- and meso-porous silicon carbide sphere (MMPSiC) in order to investigate the relationship between the electric double layer properties and pseudo-capacitive properties; the degree of oxidation of MMPSiC was also optimized. Although the oxygenated surface functionalities can lead to a decrease in the surface area o...
متن کاملبررسی تاثیر عوامل ساختاری بر اثربخشی حفاظتی سپرهای الکترومغناطیس دولایه
Introduction: Nowadays, demand for protection against radar radiation using electromagnetic shielding is on the rise. Double-layer or multilayer shielding were devised in order to improve the single layer electromagnetic shielding properties. In this study, we tried to prepare a new double-layers electromagnetic shield and investigate the effect of structural factors such as thickness, similar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 48 23 شماره
صفحات -
تاریخ انتشار 2014